USN

Third Semester B.E. Degree Examination, June/July 2015 Logic Design

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Express the following Boolean function in canonical min term form:

$$F(A,B,C) = \overline{A}\overline{B} + C$$
.

(04 Marks)

b. Express the following Boolean function in canonical max term form:

$$F(A,B,C,D) = \overline{AB} + \overline{CD}$$
.

(08 Marks)

c. Simplify the following Boolean function using four variable 'k' map. Realize the simplified expression using NAND gates.

$$F(A, B, C, D) = \sum m(1, 5, 6, 7, 11, 12, 13, 15).$$

(08 Marks)

- 2 a. Simplify the following Boolean function using Quine -- Moclusky's minimization technique. $F(A, B, C, D) = \sum m(6, 7, 9, 10, 13) + d(1, 4, 5, 11, 15).$ (10 Marks)
 - b. Consider the following Boolean equation:

 $F(A, B, C, D) = \sum m(1, 3, 7, 11, 15) + \sum d(0, 2, 5).$

Simplify the function F using a 3 variable MEV k – map. Assign the variable D to be the MEV. (10 Marks)

3 a. Implement the Boolean functions:

$$F_1(x, y, z) = X\overrightarrow{Y} \overrightarrow{Y} Z$$

$$F_2(x, y, z) = \pi m(0,3,5)$$

Using a 3 – 8 line decoder IC 74138 with active low outputs.

(08 Marks)

b. Interface a 10 key keypad to a digital system using a IC 74147 which is a 10 line to BCD priority encoder. Draw the logic diagram and explain the operation with the truth table.

(12 Marks)

4 a. Implement the Boolean function:

$$F(A, B, C, D) = \sum m(0, 1, 2, 4, 5, 7, 8, 9)$$

Using a 8 to 1 multiplexer. Draw the logic diagram and explain the operation. Additional gates can be used if required. (08 Marks)

- b. Explain the operation of a full subtractor with the help of a truth table and Boolean expressions for the outputs. Implement the full subtractor using two numbers of
 - i) 4 to 1 multiplexers
 - ii) 2 to 1 multiplexers.

Additional gates if required can be used.

(08 Marks)

c. Design a one bit binary comparator.

(04 Marks)

PART - B

- 5 a. Explain the operation of a gated SR latch with a logic diagram and a truth table. (06 Marks)
 - b. Explain the operation of a positive edge trigged 'D' flip-flop with the help of a logic diagram and truth table. Also draw the relevant waveforms. (04 Marks)
 - c. Draw the output waveforms Q_M and Q_S the outputs of the master and the slave respectively, if the inputs to a master slave JK flip-flop one as indicated below. (10 Marks)

- 6 a. Design a 4 bit binary ripple up counter using negative edge triggered JK flip-flops. Draw the timing diagram with respect to the input cock pulses. Explain the operation. (10 Marks)
 - b. Design a synchronous counter using clocked JK flip-flop for the counting sequence shown below:

Q_2	Q_1	Q_0
0	0	0
0	1	0
0	1	1
_ 1	1	0
1	0	1
. 0	0	1
0	0	0

(10 Marks)

- 7 a. Explain mealy and Mocke models of a clocked synchronous sequential circuit. (08 Marks)
 - b. Design a synchronous circuit using positive edge triggered JK flip-flops to generate the following sequence:

0-1-2-0 is input x=0 and

0 - 2 - 1 - 0 input x = 1

Provide an output which goes high to indicate the non – zero states in the 0 - 1 - 2 - 0 sequence. (12 Marks)

8 Construct the excitation table, transition table, state table and state diagram for the sequential circuit shown in Fig. Q8. (20 Marks)

